Synthetic and single-crystal X-ray diffraction studies of $\mathbf{C H}_{2} \mathbf{I}_{2}$ and aryl iodide complexes of silver carboxylates and $\boldsymbol{\beta}$-diketonates

John Powell,* Michael J. Horvath, Alan Lough, Andrew Phillips and Jason Brunet
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada

Abstract

The silver(I) iodocarbon complexes $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{I}_{2}\right)_{2}\right\}_{n}\right] \mathbf{1}$, $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{n}\right] \mathbf{2}$, $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CCF}_{3}\right)_{2}\left(1,4-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{n}\right] 3$, $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(\mathrm{IC}_{6} \mathrm{H}_{5}\right)\right\}_{n}\right] 4$, $\left[\left\{\mathrm{Ag}_{4}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(p-\mathrm{IC}_{6} \mathrm{H} 4 \mathrm{Me}\right)_{2}\right\}_{n}\right] \mathbf{5},\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}-\right.\right.$ $\left.\left.\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{n}\right] \mathbf{6},\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}\left(\mathrm{HO}_{2} \mathrm{CCCl}_{3}\right)\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{n}\right] 7$, $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}\left(\mathrm{HO}_{2} \mathrm{CCCl}_{3}\right)\left(\mathrm{IC}_{6} \mathrm{H}_{5}\right)\right\}_{n}\right] \mathbf{8}$, $\left[\left\{\mathrm{Ag}_{4}(\mathrm{hfacac})_{4}\left(p-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right] \mathbf{1 0}(\mathrm{hfacac}=1,1,1,5,5,5-\right.$ hexafluoroaceylacetonate $)$ and $\left[\mathrm{Ag}_{4}(\mathrm{hfacac})_{4}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right]$ 11 have been prepared and structurally characterized by single-crystal X-ray diffraction. The silver carboxylate complexes all contain carboxylate-bridged Ag_{2} (carboxylate- $\left.O, O^{\prime}\right)_{2}$ dimers $(\mathrm{Ag}-\mathrm{O} 2.22-2.40 \AA)$ with the intradimer $\mathrm{Ag} \cdots \mathrm{Ag}$ distance varying in the range $2.9106(12)$ to $3.1527(14) \AA$ which are the values observed for the alternating dimer units $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ and $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ observed in $\mathbf{5}$. In the complexes $\mathbf{1}-\mathbf{3}$ the silver trifluoroacetate dimers are linked by I, I^{\prime}-bridging $I_{2} R$ ligands with one 'short' $\mathrm{Ag}-\mathrm{I}$ bond (2.94-3.05 \AA) and one 'long' $\mathrm{Ag}-\mathrm{I}$ bond ($3.13-3.14 \AA$) per silver. In $\mathbf{4}, 7$ and $\mathbf{8}$ the Ag_{2} (carboxylate- $\left.O, O^{\prime}\right)_{2}$ dimers are extended into a chain polymer via $\mathrm{Ag}_{2} \mathrm{O}_{2}$ rings formed by co-ordination of each silver to an oxygen atom ($\mathrm{Ag}-\mathrm{O} 2.33-2.51 \AA$) from an adjacent dimer. The $1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ forms an $\mathrm{I}, \mathrm{I}^{\prime}$ bridge across the two silver atoms of the dimer unit in 7 [$\mathrm{Ag}-\mathrm{I} 2.918(1)$ and $3.024(1) \AA$]. Complex $\mathbf{8}$ contains an acute angle bridging $\mathrm{IC}_{6} \mathrm{H}_{5}[\mathrm{Ag}-\mathrm{I} 2.927(2)$ and $2.970(2) \AA$, $\mathrm{Ag}-\mathrm{I}-\mathrm{Ag} 61.4(1)^{\circ}$], whilst in 4 the $\mathrm{IC}_{6} \mathrm{H}_{5}$ is semibridging [$\mathrm{Ag}-\mathrm{I} 2.853(1)$ and $3.309(1) \AA$]. In complex 5 the two structurally different dimer units are bridged in a wide-angle fashion by $p-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{Me}[\mathrm{Ag}-\mathrm{I} 2.9200(9)$ and 2.9333(8) $\left.\AA, \mathrm{Ag}-\mathrm{I}-\mathrm{Ag} 144.53(3)^{\circ}\right]$. Complex 6 contains eight-atom $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}-O, O^{\prime}\right)_{2}$ rings linked to six-atom $\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.$ $\left.\mathrm{CCF}_{3}-O, O^{\prime}\right)\left(\mathrm{O}_{2} \mathrm{CCF}_{3}-O, O\right)$ rings which are interlinked to give an alternating 8646 ring chain polymer with $\mathrm{I}, \mathrm{I}^{\prime}-$ bridging 1,2- $\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ across the two silvers of the six-atom rings [$\mathrm{Ag}-\mathrm{I} 2.722(2)$ and 2.980(2) \AA]. The hfacac complex 10 contains a tetranuclear unit in which the hfacac ligands both chelate and bridge whilst the p-iodotoluenes each bridge two silvers via η^{1}-iodocarbon and η^{2}-aryl co-ordination. Complex 11 is a tetranuclear unit in which three hfacac ligands both chelate and bridge whilst the fourth hfacac ligand bridges two silvers and forms a monodentate interaction with a third silver in a $\mu-\mathrm{O}, \eta^{1}-\mathrm{O}^{\prime}$ mode. One 1,2- $\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ ligand forms a monodentate interaction with a silver atom $\left[\mathrm{Ag}-\mathrm{I} 3.064(3) \AA\right.$] whilst the other two 1,2- $\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ molecules function as highly unsymmetrical bidentate ligands [$\mathrm{Ag}-\mathrm{I} 2.691(2), 3.350(2)$ and $2.719(2)$ and $3.228(2) \AA$. A . The $\mathrm{Ag}-\mathrm{I}-\mathrm{C}$ bond angles vary from $85.9(4)^{\circ}$ in 11 to $108.70(12)^{\circ}$ in 3.

Strauss and co-workers ${ }^{1,2}$ have pioneered the synthesis of silver-ion complexes of some of chemistry's weakest Lewisbase ligands, simple chlorocarbons such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and bromocarbons such as $\mathrm{CH}_{2} \mathrm{Br}_{2}$. These complexes are very air, light and moisture sensitive and require rigorously anhydrous methods of synthesis. In contrast some corresponding silver iodocarbon complexes can easily be prepared without elaborate syntheses, with the compound $\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{I}_{2}\right)\right]$ being first reported in $1906 .{ }^{3}$ We have previously reported the structural characterization of several $\mathrm{CH}_{2} \mathrm{I}_{2}$ and aryl iodide complexes of AgNO_{3} and AgPF_{6} as well as the 1,3-diiodopropane complex $\left[\mathrm{Ag}\left\{\mathrm{I}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{I}_{2}\right] \mathrm{PF}_{6}\right.$. ${ }^{4,5}$ However attempts to prepare structurally similar complexes using the simple alkyl iodides MeI, EtI and PrI all result in the expected rapid formation of AgI. We have now extended our studies to include silver carboxylate and β-diketonate systems and here report the synthesis and structural characterization of several aryl iodide and $\mathrm{CH}_{2} \mathrm{I}_{2}$ silver complexes derived from reactions with silver trifluoroacetate, silver oxide-trichloroacetic acid and silver oxide-hexafluoroacetylacetone (Hhfacac). Silver(I) exhibits linear, trigonal, tetrahedral, pentagonal and even octahedral co-ordination and subtle changes readily influence the co-ordination geometry. Consequently the primary method used structurally to characterize these new compounds is single-crystal X-ray diffraction. Two of the compounds reported here have been briefly described in a previous communication. ${ }^{6}$

Results and Discussion

Silver trifluoroacetate complexes

Crystalline products of the general form $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}{ }^{-}\right.\right.$ $\left.\left.\left(\mathrm{I}_{2} \mathrm{R}\right)_{2}\right\}_{n}\right]$ were readily obtained by adding 1 equivalent of diiodide to a suspension of $\left[\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooling the resultant solution to $-20^{\circ} \mathrm{C}$. Crystals suitable for single-crystal X-ray diffraction were obtained for $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CCF}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{I}_{2}\right)_{2}\right\}_{n}\right]$ 1, $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{n}\right] \mathbf{2}$ and [$\left.\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(1,4-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{n}\right]$ 3. Complexes $\mathbf{1}$ and $\mathbf{2}$ melt at $\approx 10^{\circ} \mathrm{C}$. On standing complex 1 decomposed to give AgI. Similar synthetic procedures using iodobenzene gave $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.\right.\right.$ $\left.\left.\mathrm{CCF}_{3}\right)_{2}\left(\mathrm{IC}_{6} \mathrm{H}_{5}\right\}_{n}\right] 4$ whilst p-iodotoluene gave $\left[\left\{\mathrm{Ag}_{4}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(p-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right\}_{n}\right]$ 5. Reaction of $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\right\}\right]$ with $1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ using a $2: 1$ stoichiometry resulted in the isolation of $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{n}\right]$.

Silver trichloroacetate complexes

The complexes $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}\left(\mathrm{HO}_{2} \mathrm{CCCl}_{3}\right)\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{n}\right]$ 7, $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}\left(\mathrm{HO}_{2} \mathrm{CCCl}_{3}\right)\left(\mathrm{IC}_{6} \mathrm{H}_{5}\right)\right\}_{n}\right] \mathbf{8}$ and $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CCCl}_{3}\right)_{2}\left(\mathrm{HO}_{2} \mathrm{CCCl}_{3}\right)\left(p-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right\}_{n}\right] 9$ were obtained as white crystalline products from the reaction of $\mathrm{Ag}_{2} \mathrm{O}$ with an excess of $\mathrm{HO}_{2} \mathrm{CCCl}_{3}$ in MeOH in the presence of the appropriate iodide.

Silver hexafluoroacetylacetonate complexes

Reaction of p-iodotoluene with $\mathrm{Ag}_{2} \mathrm{O}$ and hexafluoroacetyl-

Fig. 1 Labelling scheme and structure of complex 1. Where shown, probability ellipsoids are at the 30% level for all structures

Fig. 2 Labelling scheme and structure of complex 2

Table 1 Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 1

$\mathrm{Ag}(1)-\mathrm{O}(1)$	$2.226(4)$	$\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	$2.251(4)$
$\mathrm{Ag}(1)-\mathrm{I}(2)$	$3.1446(7)$	$\mathrm{Ag}(1)-\mathrm{I}(1)$	$3.0054(7)$
$\mathrm{I}(2)-\mathrm{C}\left(3^{2}\right)$	$2.126(6)$	$\mathrm{I}(1)-\mathrm{C}(3)$	$2.137(6)$
$\mathrm{F}(2)-\mathrm{C}(2)$	$1.321(9)$	$\mathrm{F}(1)-\mathrm{C}(2)$	$1.327(8)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.244(7)$	$\mathrm{F}(3)-\mathrm{C}(2)$	$1.337(8)$
$\mathrm{O}(2)-\mathrm{Ag}\left(1^{1}\right)$	$2.251(4)$	$\mathrm{O}(2)-\mathrm{C}(1)$	$1.245(7)$
$\mathrm{C}(3)-\mathrm{I}\left(2^{3}\right)$	$2.126(6)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.541(8)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.96	$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.96
$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	$160.6(2)$	$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{I}(1)$	$101.75(12)$
$\mathrm{O}\left(2^{1}\right)-\mathrm{Ag}(1)-\mathrm{I}(1)$	$93.40(12)$	$\mathrm{O}\left(2^{1}\right)-\mathrm{Ag}(1)-\mathrm{I}(2)$	$84.28(12)$
$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{I}(2)$	$108.38(13)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{I}(2)$	$86.53(2)$
$\mathrm{C}(3)-\mathrm{I}(1)-\mathrm{Ag}(1)$	$93.3(2)$	$\mathrm{C}\left(3^{2}\right)-\mathrm{I}(2)-\mathrm{Ag}(1)$	$85.4(2)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Ag}(1)$	$121.7(4)$	$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Ag}\left(1^{1}\right)$	$127.5(4)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$129.9(5)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$113.5(5)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$116.6(5)$	$\mathrm{F}(2)-\mathrm{C}(2)-\mathrm{F}(1)$	$107.9(6)$
$\mathrm{F}(2)-\mathrm{C}(2)-\mathrm{F}(3)$	$106.6(5)$	$\mathrm{F}(1)-\mathrm{C}(2)-\mathrm{F}(3)$	$107.4(6)$
$\mathrm{F}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$110.4(6)$	$\mathrm{F}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$111.6(5)$
$\mathrm{F}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$112.6(5)$	$\mathrm{I}\left(2^{3}\right)-\mathrm{C}(3)-\mathrm{I}(1)$	$112.6(3)$

Symmetry transformations used to generate equivalent atoms: $1-x+1$, $-y+1,-z+2 ; 2 x,-y+\frac{1}{2}, z+\frac{1}{2} ; 3 x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Fig. 3 Labelling scheme and structure of complex 3
acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave, on addition of pentane and cooling, the complex $\left[\mathrm{Ag}_{4}(\mathrm{hfacac})_{4}\left(p-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right] \mathbf{1 0}$ whilst a similar reaction with $1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ led to the isolation of $\left[\mathrm{Ag}_{4}(\mathrm{hfacac})_{4}-\right.$ $\left.\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right] 11$.

Single-crystal X-ray diffraction studies

The solid-state structures of the compounds $\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}{ }^{-}\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{I}_{2}\right)_{2}\right\}_{n}\right] \mathbf{1},\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{n}\right] \mathbf{2}$ and $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CCF}_{3}\right)_{2}\left(1,4-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{n}\right] 3$ are shown in Figs. 1-3. Selected bond lengths and bond angles are given in Tables 1-3. All three compounds contain ' $\mathrm{I}_{2} \mathrm{Ag}\left(\mu-\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2} \mathrm{AgI}_{2}$ ' structural units. The three-atom trifluoroacetate bridges are almost coplanar ($\mathrm{Ag}-\mathrm{O}$ $2.21-2.25 \AA, \mathrm{O}-\mathrm{Ag}-\mathrm{O} 153-161^{\circ}$) and each silver has one 'short' $\mathrm{Ag}-\mathrm{I}$ bond length [3.0054(7) 1, 3.0556(10) 2, 2.9394(5) $\AA 3$] and one 'long' Ag-I bond length [3.1446(7) 1, 3.1339(11) 2,

Table 2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 2

$\mathrm{I}(1)-\mathrm{C}\left(6^{1}\right)$	$2.094(6)$	$\mathrm{I}(1)-\operatorname{Ag}(1)$	$3.0556(10)$
$\mathrm{I}(2)-\mathrm{C}(1)$	$2.101(6)$	$\mathrm{I}(2)-\mathrm{Ag}(1)$	$3.1339(11)$
$\mathrm{Ag}(1)-\mathrm{O}(1)$	$2.213(5)$	$\mathrm{Ag}(1)-\mathrm{O}\left(2^{2}\right)$	$2.223(4)$
$\mathrm{C}\left(6^{1}\right)-\mathrm{I}(1)-\mathrm{Ag}(1)$	$92.1(2)$	$\mathrm{C}(1)-\mathrm{I}(2)-\operatorname{Ag}(1)$	$103.8(2)$
$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{2}\right)$	$155.6(2)$	$\mathrm{O}(1)-\operatorname{Ag}(1)-\mathrm{I}(1)$	$112.2(2)$
$\mathrm{O}\left(2^{2}\right)-\mathrm{Ag}(1)-\mathrm{I}(1)$	$88.12(13)$	$\mathrm{O}(1)-\operatorname{Ag}(1)-\mathrm{I}(2)$	$94.53(12)$
$\mathrm{O}\left(2^{2}\right)-\mathrm{Ag}(1)-\mathrm{I}(2)$	$100.14(13)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{I}(2)$	$86.70(3)$
$\mathrm{C}(7)-\mathrm{O}(1)-\operatorname{Ag}(1)$	$117.5(4)$	$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{Ag}\left(1^{2}\right)$	$134.1(4)$

Symmetry transformations used to generate equivalent atoms: $1 x-1$, $y, z ; 2-x+1,-y+1,-z+1 ; 3 x+1, y, z$.

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 3

$\mathrm{Ag}(1)-\mathrm{O}(1)$	$2.242(3)$	$\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	$2.271(3)$
$\mathrm{Ag}(1)-\mathrm{I}\left(1^{2}\right)$	$2.9394(5)$	$\mathrm{Ag}(1)-\mathrm{I}(2)$	$3.1375(6)$
$\mathrm{I}(1)-\mathrm{C}(4)$	$2.105(4)$	$\mathrm{I}(1)-\mathrm{Ag}\left(1^{3}\right)$	$2.9394(5)$
$\mathrm{I}(2)-\mathrm{C}(1)$	$2.099(4)$	$\mathrm{O}(1)-\mathrm{C}(7)$	$1.239(5)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.245(5)$	$\mathrm{O}(2)-\mathrm{Ag}\left(1^{1}\right)$	$2.271(3)$
$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	$153.36(12)$	$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{I}\left(1^{2}\right)$	$98.62(8)$
$\mathrm{O}\left(2^{1}\right)-\mathrm{Ag}(1)-\mathrm{I}\left(1^{2}\right)$	$105.08(8)$	$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{I}(2)$	$99.99(9)$
$\mathrm{O}\left(2^{1}\right)-\mathrm{Ag}(1)-\mathrm{I}(2)$	$88.41(8)$	$\mathrm{I}\left(1^{2}\right)-\mathrm{Ag}(1)-\mathrm{I}(2)$	$98.72(2)$
$\mathrm{C}(4)-\mathrm{I}(1)-\mathrm{Ag}\left(1^{3}\right)$	$108.70(12)$	$\mathrm{C}(1)-\mathrm{I}(2)-\mathrm{Ag}(1)$	$93.31(12)$
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{Ag}(1)$	$128.8(3)$	$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{Ag}\left(1^{1}\right)$	$116.9(3)$

Symmetry transformations used to generate equivalent atoms: 1 $-x+1,-y+1,-z+1 ; 2 x,-y+\frac{1}{2}, z-\frac{1}{2} ; 3 x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Fig. 4 Labelling scheme and structure of complex 4. The CF_{3} groups are disordered over two sites
3.1375(6) Å 3]. The shorter AgI is closer to being coplanar with the μ-carboxylate bridges whilst the longer AgI takes an 'axial' position. The silver-silver distances are $3.0030(11) \mathbf{1}$, $3.1163(14) 2$ and $3.0300(8) \AA 3$, somewhat longer than that observed in silver trifluoroacetate [2.967(3) \AA] and structurally similar systems. ${ }^{7,8}$ Complex 1 consists of spiral chains of

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 4

$\mathrm{Ag}(1)-\mathrm{I}(1)$	$2.853(1)$	$\mathrm{Ag}(1)-\mathrm{O}(1)$	$2.327(6)$
$\mathrm{Ag}(1)-\mathrm{O}(4)$	$2.250(7)$	$\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	$2.399(5)$
$\mathrm{Ag}(2)-\mathrm{O}(2)$	$2.223(6)$	$\mathrm{Ag}(2)-\mathrm{O}(3)$	$2.316(7)$
$\mathrm{Ag}(2)-\mathrm{O}\left(3^{2}\right)$	$2.397(5)$	$\mathrm{I}(1)-\mathrm{C}(1)$	$2.082(9)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.234(9)$	$\mathrm{O}(1)-\mathrm{Ag}\left(1^{1}\right)$	$2.399(5)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.237(8)$	$\mathrm{O}(3)-\mathrm{C}(9)$	$1.248(9)$
$\mathrm{O}(3)-\mathrm{Ag}\left(2^{2}\right)$	$2.397(5)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.232(8)$
$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(1)$	$105.1(1)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(4)$	$112.0(1)$
$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}(4)$	$130.2(2)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	$112.3(1)$
$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	$78.0(2)$	$\mathrm{O}(4)-\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	$114.8(2)$
$\mathrm{O}(2)-\mathrm{Ag}(2)-\mathrm{O}(3)$	$146.1(2)$	$\mathrm{O}(2)-\mathrm{Ag}(2)-\mathrm{O}\left(3^{2}\right)$	$134.8(2)$
$\mathrm{O}(3)-\mathrm{Ag}(2)-\mathrm{O}\left(3^{2}\right)$	$76.7(2)$	$\mathrm{Ag}(1)-\mathrm{I}(1)-\mathrm{C}(1)$	
$\mathrm{Ag}(1)-\mathrm{O}(1)-\mathrm{C}(7)$	$122.4(5)$	$\mathrm{Ag}(1)-\mathrm{O}(1)-\mathrm{Ag}\left(1^{1}\right)$	$102.0(2)$
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{Ag}\left(1^{1}\right)$	$135.6(5)$	$\mathrm{Ag}(2)-\mathrm{O}(2)-\mathrm{C}(7)$	$126.0(6)$
$\mathrm{Ag}(2)-\mathrm{O}(3)-\mathrm{C}(9)$	$122.8(5)$	$\mathrm{Ag}(2)-\mathrm{O}(3)-\mathrm{Ag}\left(2^{2}\right)$	$103.3(2)$
$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{Ag}\left(2^{2}\right)$	$133.0(6)$	$\mathrm{Ag}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$120.3(6)$

Symmetry transformations used to generate equivalent atoms: $11-x$, $1-y, 1-z ; 2-x, 2-y, 1-z$.
$\left(\mathrm{AgICH}_{2} \mathrm{I}\right)_{n}$ units interlinked by ' $\mathrm{Ag}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2} \mathrm{Ag}$ rings'. Complex 2 is a ladder array in which two $\left[\mathrm{Ag}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right]_{n}$ chains are cross-linked by ' $\mathrm{Ag}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2} \mathrm{Ag}$ rings'. Complex 3 has a structural assembly similar to that of $\mathbf{1}$. The I-Ag-I bond angles vary from $c a .86 .5^{\circ}$ for $\mathbf{1}$ and $\mathbf{2}$ to $98.72(2)^{\circ}$ for $\mathbf{3}$. The $\mathrm{Ag}-\mathrm{I}-\mathrm{C}$ bond angles vary considerably ranging from a low value of $85.4(2)^{\circ}$ found in $\mathbf{1}$ to a high value of $108.70(12)^{\circ}$ found in 3 consistent with relatively easy angular distortion (bond bending) of the weak $\mathrm{RI}-\mathrm{Ag}^{+}$interactions.

Iodobenzene complexes. The solid-state structure of the complex $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(\mathrm{IC}_{6} \mathrm{H}_{5}\right)\right\}_{n}\right] \mathbf{4}$ is shown in Fig. 4. Selected bond lengths and bond angles are given in Table 4. Complex 4 contains a chain polymer array of interlinked $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ dimers with an iodobenzene co-ordinated via the iodine atom to alternating silver atoms. The chain polymer is very similar to that observed in $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\right\}_{n}\right]$ except that co-ordination of the iodobenzene is accompanied by a slight distortion away from coplanarity of the bridging carboxylates in $\mathbf{4}$, vis- $\grave{\text { a }}$-vis $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\right\}_{n}\right]^{7}$. The $\mathrm{Ag} \cdots \mathrm{Ag}$ separation in $\mathbf{4}[2.937(1) \AA]$ is very similar to that of $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\right\}_{n}\right][2.967(3) \AA]$. The iodobenzene bonds to alternate Ag atoms with an $\mathrm{Ag}(1)-\mathrm{I}$ bond length of 2.853(1) \AA and with an $\mathrm{Ag}-\mathrm{I}-\mathrm{C}$ bond angle of $99.0(2)^{\circ}$. The distance between $\mathrm{Ag}(2)$ and I is $3.309(1) \AA$ and the $\mathrm{Ag}(2)-\mathrm{Ag}(1)-\mathrm{I}$ bond angle is 69.7° suggestive of a weak $\operatorname{Ag}(2) \cdots \mathrm{I}$ interaction and a semibridging situation.
The structure of the trichlorocetate system $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CCCl}_{3}\right)_{2}\left(\mathrm{HO}_{2} \mathrm{CCCl}_{3}\right)\left(\mathrm{IC}_{6} \mathrm{H}_{5}\right)\right\}_{n}\right] \mathbf{8}$ is shown in Fig. 5. Selected bond lengths and bond angles are given in Table 5. The solidstate structure of $\mathbf{8}$ consists of two silver atoms bridged by two trichloroacetates and by the iodine atom of the iodobenzene. The Ag-I bond lengths are 2.927(3) and 2.970(2) \AA and the $\mathrm{Ag}-\mathrm{I}-\mathrm{Ag}$ bond angle is $61.4(1)^{\circ}$. One of the silver-oxygen bonds is bridged by a trichloroacetic acid molecule hydrogen bonded to the oxygen of a trichloroacetate bridge and with a long $\mathrm{CCl}_{3} \mathrm{C}(\mathrm{OH})=\mathrm{O} \cdots \mathrm{Ag}$ interaction $[\mathrm{O}(6) \cdots \mathrm{Ag}(1)]$ of $2.861(10) \AA$. The $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}\left(\mathrm{HO}_{2} \mathrm{CCCl}_{3}\right)\left(\mathrm{IC}_{6} \mathrm{H}_{5}\right)$ units are linked via $\mathrm{Ag}_{2} \mathrm{O}_{2}$ interactions involving one of the oxygen atoms in each bridging trichloroacetate to give a chain structure very similar to that observed in 4. The $\mathrm{Ag} \cdots \mathrm{Ag}$ separation is 3.014(1) \AA and $\mathrm{Ag}-\mathrm{I}-\mathrm{C}$ bond angles are 94.4(7) and 102.3(8) ${ }^{\circ}$.

The structure of $\left[\left\{\mathrm{Ag}_{4}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(p-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right\}_{n}\right]$ $\mathbf{5}$ is shown in Fig. 6. Selected bond lengths and bond angles are given in Table 6. The structure is composed of alternating $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ and $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ dimers with $\mathrm{Ag} \cdots \mathrm{Ag}$ separations of $3.1527(4)$ and $2.9106(12) \AA$ respectively. These dimers are linked by the bridging iodine atom of the p-iodotoluene. The $\mathrm{Ag}-\mathrm{I}$ bond lengths are $2.9200(9)$ and $2.9333(8) \AA$ and the $\mathrm{Ag}-\mathrm{I}-\mathrm{Ag}$ bond angle is $144.53(3)^{\circ}$. The

Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 8

$\mathrm{Ag}(1)-\mathrm{I}(1)$	$2.927(2)$	$\mathrm{Ag}(1)-\mathrm{O}(2)$	$2.379(12)$
$\mathrm{Ag}(1)-\mathrm{O}(3)$	$2.272(11)$	$\mathrm{Ag}(1)-\mathrm{O}\left(3^{2}\right)$	$2.465(11)$
$\mathrm{Ag}(2)-\mathrm{I}(1)$	$2.970(2)$	$\mathrm{Ag}(2)-\mathrm{O}(1)$	$2.301(12)$
$\mathrm{Ag}(2)-\mathrm{O}(4)$	$2.230(12)$	$\mathrm{Ag}(2)-\mathrm{O}\left(1^{1}\right)$	$2.534(11)$
$\mathrm{I}(1)-\mathrm{C}(11)$	$2.093(26)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.264(20)$
$\mathrm{O}(1)-\mathrm{Ag}\left(2^{1}\right)$	$2.534(11)$	$\mathrm{O}(2)-\mathrm{C}(1)$	$1.232(20)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.260(20)$	$\mathrm{O}(3)-\mathrm{Ag}\left(1^{2}\right)$	$2.465(11)$
$\mathrm{O}(4)-\mathrm{C}(3)$	$1.218(20)$	$\mathrm{C}(5)-\mathrm{O}(5)$	$1.293(29)$
$\mathrm{C}(5)-\mathrm{O}(6)$	$1.169(28)$	$\mathrm{O}(5)-\mathrm{HO}$	0.70
$\mathrm{HO} \cdots \mathrm{O}(2)$	2.25	$\mathrm{O}(2) \cdots \mathrm{O}(5)$	$2.685(15)$
$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(2)$	$101.7(3)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(3)$	$109.5(3)$
$\mathrm{O}(2)-\mathrm{Ag}(1)-\mathrm{O}(3)$	$123.5(4)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(3^{2}\right)$	$98.9(3)$
$\mathrm{O}(2)-\mathrm{Ag}(1)-\mathrm{O}\left(3^{2}\right)$	$138.4(4)$	$\mathrm{O}(3)-\mathrm{Ag}(1)-\mathrm{O}\left(3^{2}\right)$	$81.7(4)$
$\mathrm{I}(1)-\mathrm{Ag}(2)-\mathrm{O}(1)$	$100.0(3)$	$\mathrm{I}(1)-\mathrm{Ag}(2)-\mathrm{O}(4)$	$107.9(3)$
$\mathrm{O}(1)-\mathrm{Ag}(2)-\mathrm{O}(4)$	$131.3(5)$	$\mathrm{I}(1)-\mathrm{Ag}(2)-\mathrm{O}\left(1^{1}\right)$	$106.9(3)$
$\mathrm{O}(1)-\mathrm{Ag}(2)-\mathrm{O}\left(1^{1}\right)$	$75.2(5)$	$\mathrm{O}(4)-\mathrm{Ag}(2)-\mathrm{O}\left(1^{1}\right)$	$129.6(4)$
$\mathrm{Ag}(1)-\mathrm{I}(1)-\mathrm{Ag}(2)$	$61.4(1)$	$\mathrm{Ag}(1)-\mathrm{I}(1)-\mathrm{C}(11)$	$102.3(7)$
$\mathrm{Ag}(2)-\mathrm{I}(1)-\mathrm{C}(11)$	$94.4(7)$	$\mathrm{Ag}(2)-\mathrm{O}(1)-\mathrm{C}(1)$	$120.6(10)$
$\mathrm{Ag}(2)-\mathrm{O}(1)-\mathrm{Ag}\left(2^{1}\right)$	$104.8(5)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Ag}\left(2^{1}\right)$	$133.9(11)$
$\mathrm{Ag}(1)-\mathrm{O}(2)-\mathrm{C}(1)$	$132.8(12)$	$\mathrm{Ag}(1)-\mathrm{O}(3)-\mathrm{C}(3)$	$121.0(10)$
$\mathrm{Ag}(1)-\mathrm{O}(3)-\mathrm{Ag}\left(1^{2}\right)$	$98.3(4)$	$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{Ag}\left(1^{2}\right)$	$134.6(10)$
$\mathrm{Ag}(2)-\mathrm{O}(4)-\mathrm{C}(3)$	$132.8(10)$		
Sy			

Symmetry transformations used to generate equivalent atoms: $1 \frac{1}{2}-x$, $\frac{1}{2}-y,-z ; 2-x,-y,-z$.

Fig. 5 Labelling scheme and structure of complex 8. The hydrogen bond to the trichloroacetic acid solvate molecule is shown with broken lines
$\mathrm{Ag}-\mathrm{I}-\mathrm{C}$ bond angles are $101.2(2)$ and 102.2 (2) ${ }^{\circ}$. The water molecules occupy axial sites on opposite faces of the $\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.$ $\left.\mathrm{CCF}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ unit. The $\mathrm{Ag}-\mathrm{O}$ bond length for the co-ordinated $\mathrm{H}_{2} \mathrm{O}$ is $2.512(6) \AA$ which is significantly longer than the $\mathrm{Ag}-\mathrm{O}$ carboxylate bonds (ca. $2.25 \AA$). The chain structures are crosslinked by hydrogen bonds between the $\mathrm{H}_{2} \mathrm{O}$ molecules and carboxylate oxygens on neighbouring chains.

The structure of $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}\left(\mathrm{HO}_{2} \mathrm{CCCl}_{3}\right)\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\left.\mathrm{H}_{4}\right)\right\}_{n}\right] 7$ is shown in Fig. 7. Selected bond lengths and bond angles are given in Table 7. The structure is very similar to that

Table 6 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 5

$\mathrm{I}(1)-\mathrm{C}(1)$	$2.119(8)$	$\mathrm{I}(1)-\mathrm{Ag}(1)$	$2.9200(9)$
$\mathrm{I}(1)-\mathrm{Ag}(2)$	$2.9333(8)$	$\mathrm{Ag}(1)-\mathrm{O}\left(2^{2}\right)$	$2.231(6)$
$\mathrm{Ag}(1)-\mathrm{O}(1)$	$2.233(6)$	$\mathrm{Ag}(2)-\mathrm{O}\left(4^{3}\right)$	$2.256(6)$
$\mathrm{Ag}(2)-\mathrm{O}(3)$	$2.282(5)$	$\mathrm{Ag}(2)-\mathrm{O}(5)$	$2.512(6)$
$\mathrm{O}(1)-\mathrm{C}(8)$	$1.245(10)$	$\mathrm{O}(1) \cdots \mathrm{H}\left(20^{1}\right)$	$2.07(11)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.235(10)$	$\mathrm{O}(2)-\mathrm{Ag}\left(1^{2}\right)$	$2.231(6)$
$\mathrm{O}(3)-\mathrm{C}(10)$	$1.249(10)$	$\mathrm{O}(3)-\mathrm{H}\left(10^{1}\right)$	$2.17(8)$
$\mathrm{O}(4)-\mathrm{C}(10)$	$1.238(10)$	$\mathrm{O}(5)-\mathrm{H}(10)$	$0.72(8)$
$\mathrm{C}(1)-\mathrm{I}(1)-\mathrm{Ag}(1)$	$102.2(2)$		
$\mathrm{Ag}(1)-\mathrm{I}(1)-\mathrm{Ag}(2)$	$144.53(3)$	$\mathrm{O}(1)-\mathrm{I}(1)-\mathrm{Ag}(2)$	$101.2(2)$
$\mathrm{O}\left(2^{2}\right)-\mathrm{Ag}(1)-\mathrm{I}(1)$	$110.65(14)$	$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}(1)$	$146.6(2)$
$\mathrm{O}\left(4^{3}\right)-\mathrm{Ag}(2)-\mathrm{O}(3)$	$151.2(2)$	$\mathrm{O}\left(4^{3}\right)-\mathrm{Ag}(2)-\mathrm{O}(5)$	$97.14(14)$
$\mathrm{O}(3)-\mathrm{Ag}(2)-\mathrm{O}(5)$	$99.7(2)$	$\mathrm{O}\left(4^{3}\right)-\mathrm{Ag}(2)-\mathrm{I}(1)$	$102.9(2)$
$\mathrm{O}(3)-\mathrm{Ag}(2)-\mathrm{I}(1)$	$101.80(14)$	$\mathrm{O}(5)-\mathrm{Ag}(2)-\mathrm{I}(1)$	$95.3(2)$
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{Ag}(1)$	$125.0(5)$	$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{Ag}\left(1^{2}\right)$	$123.2(5)$
$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{Ag}(2)$	$117.2(5)$	$\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{Ag}\left(2^{3}\right)$	$124.7(5)$

Symmetry transformations used to generate equivalent atoms: $1 x-1$, $y, z ; 2-x,-y+1,-z+1 ; 3-x+2,-y+1,-z$.

Table 7 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 7

$\mathrm{Ag}(2)-\mathrm{I}(1)$	$2.9180(10)$	$\mathrm{Ag}(2)-\mathrm{O}(1)$	$2.226(6)$
$\mathrm{Ag}(2)-\mathrm{O}(4)$	$2.273(5)$	$\mathrm{Ag}(2)-\mathrm{O}\left(2^{1}\right)$	$2.466(7)$
$\mathrm{Ag}(1)-\mathrm{I}(2)$	$3.0240(10)$	$\mathrm{Ag}(1)-\mathrm{O}(2)$	$2.334(5)$
$\mathrm{Ag}(1)-\mathrm{O}(3)$	$2.317(5)$	$\mathrm{Ag}(1)-\mathrm{O}\left(4^{2}\right)$	$2.717(7)$
$\mathrm{I}(1)-\mathrm{C}(16)$	$2.109(7)$	$\mathrm{I}(2)-\mathrm{C}(11)$	$2.093(10)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.214(11)$	$\mathrm{O}(2)-\mathrm{C}(1)$	$1.241(12)$
$\mathrm{O}(2)-\mathrm{Ag}\left(2^{2}\right)$	$2.466(7)$	$\mathrm{O}(3)-\mathrm{C}(3)$	$1.247(11)$
$\mathrm{O}(4)-\mathrm{C}(3)$	$1.239(11)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.557(9)$
$\mathrm{O}(6)-\mathrm{C}(5)$	$1.185(10)$	$\mathrm{O}(5)-\mathrm{C}(5)$	$1.264(13)$
$\mathrm{O}(3) \cdots \mathrm{O}(5)$	$2.715(9)$	$\mathrm{O}(5)-\mathrm{HO}$	$0.962(10)$
$\mathrm{HO} \cdots \mathrm{O}(3)$	1.75		
$\mathrm{I}(1)-\mathrm{Ag}(2)-\mathrm{O}(1)$	$103.0(2)$	$\mathrm{I}(1)-\mathrm{Ag}(2)-\mathrm{O}(4)$	$106.5(2)$
$\mathrm{O}(1)-\mathrm{Ag}(2)-\mathrm{O}(4)$	$137.9(2)$	$\mathrm{I}(1)-\mathrm{Ag}(2)-\mathrm{O}\left(2^{1}\right)$	$115.2(1)$
$\mathrm{O}(1)-\mathrm{Ag}(2)-\mathrm{O}\left(2^{1}\right)$	$114.3(2)$	$\mathrm{O}(4)-\mathrm{Ag}(2)-\mathrm{O}\left(2^{1}\right)$	$78.9(2)$
$\mathrm{I}(2)-\mathrm{Ag}(1)-\mathrm{O}(2)$	$84.3(1)$	$\mathrm{I}(2)-\mathrm{Ag}(1)-\mathrm{O}(3)$	$120.0(2)$
$\mathrm{O}(2)-\mathrm{Ag}(1)-\mathrm{O}(3)$	$149.4(2)$	$\mathrm{Ag}(2)-\mathrm{I}(1)-\mathrm{C}(16)$	$96.3(2)$
$\mathrm{Ag}(1)-\mathrm{I}(2)-\mathrm{C}(11)$	$97.4(2)$	$\mathrm{Ag}(2)-\mathrm{O}(1)-\mathrm{C}(1)$	$131.3(6)$
$\mathrm{Ag}(1)-\mathrm{O}(2)-\mathrm{C}(1)$	$122.0(5)$	$\mathrm{Ag}(1)-\mathrm{O}(2)-\mathrm{Ag}\left(2^{2}\right)$	$100.4(3)$
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Ag}\left(2^{2}\right)$	$136.2(4)$	$\mathrm{Ag}(1)-\mathrm{O}(3)-\mathrm{C}(3)$	$126.8(5)$
$\mathrm{Ag}(2)-\mathrm{O}(4)-\mathrm{C}(3)$	$121.6(5)$	$\mathrm{O}(3)-\mathrm{Ag}(1)-\mathrm{O}\left(4^{2}\right)$	$122.8(5)$
$\mathrm{Ag}(1)-\mathrm{O}\left(4^{2}\right)-\mathrm{Ag}\left(2^{2}\right)$	$94.9(5)$	$\mathrm{I}(2)-\mathrm{Ag}(1)-\mathrm{O}\left(4^{2}\right)$	$87.1(5)$

Symmetry transformations used to generate equivalent atoms: $1 x$, $\frac{1}{2}-y, \frac{1}{2}+z ; 2 x, \frac{1}{2}-y,-\frac{1}{2}-z$.

Fig. 6 Labelling scheme and structure of complex 5. One of the CF_{3} groups is disordered over two sites
of compound $\mathbf{8}$, Fig. 5. The polymer chain is composed of linked silver trichloroacetate dimers with the two silver atoms of the dimers being bridged by 1,2-diiodobenzene bonding to

Table 8 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 6

$\mathrm{I}(1)-\mathrm{Ag}(1)$	$2.722(2)$	$\mathrm{I}(1)-\mathrm{C}(1)$	$2.112(13)$
$\mathrm{I}(2)-\mathrm{Ag}(2)$	$2.980(2)$	$\mathrm{I}(2)-\mathrm{C}(2)$	$2.067(15)$
$\mathrm{Ag}(1)-\mathrm{O}(2)$	$2.288(12)$	$\mathrm{Ag}(1)-\mathrm{O}(4)$	$2.465(9)$
$\mathrm{Ag}(2)-\mathrm{O}(1)$	$2.275(15)$	$\mathrm{Ag}(2)-\mathrm{O}\left(2^{1}\right)$	$2.4039(10)$
$\mathrm{Ag}(2)-\mathrm{O}(4)$	$2.382(11)$	$\mathrm{Ag}(2)-\mathrm{O}\left(3^{2}\right)$	$2.343(10)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.196(18)$	$\mathrm{O}(2)-\mathrm{C}(7)$	$1.230(18)$
$\mathrm{O}(2)-\mathrm{Ag}\left(1^{1}\right)$	$2.403(10)$	$\mathrm{O}(3)-\mathrm{C}(9)$	$1.230(14)$
$\mathrm{O}(3)-\mathrm{Ag}\left(2^{2}\right)$	$2.343(10)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.219(16)$
$\mathrm{Ag}(\mathrm{I})-\mathrm{I}(1)-\mathrm{C}(1)$	$97.4(4)$	$\mathrm{Ag}(2)-\mathrm{I}(2)-\mathrm{C}(2)$	$102.9(4)$
$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(2)$	$140.2(3)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(4)$	$98.7(3)$
$\mathrm{O}(2)-\mathrm{Ag}(1)-\mathrm{O}(4)$	$98.0(4)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	$123.9(3)$
$\mathrm{O}(2)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	$79.4(4)$	$\mathrm{O}(4)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	$115.5(4)$
$\mathrm{I}(2)-\mathrm{Ag}(2)-\mathrm{O}(1)$	$148.3(4)$	$\mathrm{I}(2)-\mathrm{Ag}(2)-\mathrm{O}(4)$	$90.1(3)$
$\mathrm{O}(1)-\mathrm{Ag}(2)-\mathrm{O}(4)$	$95.2(4)$	$\mathrm{I}(2)-\mathrm{Ag}(2)-\mathrm{O}\left(3^{2}\right)$	$83.0(3)$
$\mathrm{O}(1)-\mathrm{Ag}(2)-\mathrm{O}\left(3^{2}\right)$	$98.9(4)$	$\mathrm{O}(4)-\mathrm{Ag}(2)-\mathrm{O}\left(3^{2}\right)$	$163.0(3)$
$\mathrm{Ag}(2)-\mathrm{O}(1)-\mathrm{C}(7)$	$137.8(13)$	$\mathrm{Ag}(1)-\mathrm{O}(2)-\mathrm{C}(7)$	$116.6(10)$
$\mathrm{Ag}(1)-\mathrm{O}(2)-\mathrm{Ag}\left(1^{1}\right)$	$100.6(4)$	$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{Ag}\left(1^{1}\right)$	$140.3(11)$
$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{Ag}\left(2^{2}\right)$	$118.6(9)$	$\mathrm{Ag}(1)-\mathrm{O}(4)-\mathrm{Ag}(2)$	$88.7(3)$
$\mathrm{Ag}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$141.7(10)$	$\mathrm{Ag}(2)-\mathrm{O}(4)-\mathrm{C}(9)$	$128.0(8)$
$\mathrm{S}(9)$			

Symmetry transformations used to generate equivalent atoms: $11-x$, $-y, 1-z ; 2-x, 1-y, 1-z$.

Fig. 7 Labelling scheme and structure of complex 7. The hydrogen bond to the trichloroacetic acid solvate molecule is shown with broken lines
silver via η^{1} co-ordination of the iodine atoms with Ag -I bond lengths of 2.918(1) and 3.024(1) \AA and $\mathrm{Ag}-\mathrm{I}-\mathrm{C}$ bond angles of 96.3(2) and 97.4(2).

In comparison to the $\mu-\mathrm{IC}_{6} \mathrm{H}_{5}$ complex 8 the co-ordination of the 1,2 -diiodobenzene results in a slight twist of the $\mathrm{Ag}_{2}\left(\mathrm{O}_{2}-\right.$ $\left.\mathrm{CCCl}_{3}\right)_{2}$ ring structure in 7 relative to 8 , which is reflected in larger $\mathrm{O}-\mathrm{Ag}-\mathrm{O}$ angles within the $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}$ ring [149.4(2) vs. $123.5(4)^{\circ}$ for 8]. This distortion is also reflected in the nonsymmetry of the 1,2 -diiodobenzene bridge which exhibits $\mathrm{Ag}-\mathrm{Ag}-\mathrm{I}$ angles of $77[\mathrm{Ag}(2)-\mathrm{Ag}(1)-\mathrm{I}(1)]$ and $109^{\circ}[\mathrm{Ag}(1)-$ $\mathrm{Ag}(2)-\mathrm{I}(2)]$. As with 8 the compound 7 contains a trichloroacetic acid molecule which bridges one of the silver-oxygen bonds

Fig. 8 Labelling scheme and structure of complex 6
of each $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}$ unit via a hydrogen bond to the oxygen and a long $\mathrm{CCl}_{3} \mathrm{C}(\mathrm{OH})=\mathrm{O} \cdots \mathrm{Ag}$ interaction $[2.799(11) \AA$. $]$.
The structure of $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{n}\right] \mathbf{6}$ is shown in Fig. 8. Selected bond lengths and bond angles are given in Table 8. The compound is polymeric with bridging 1,2 -diiodobenzenes η^{1} co-ordinated to silver via the iodine atoms. The arrangement of the bridging carboxylates is unusual and different to those previously observed in other silver carboxylate compounds. ${ }^{2}$ The polymer chain is composed of three different fused-ring structures. Two are the expected $\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ eight-atom ring and the $\mathrm{Ag}_{2} \mathrm{O}_{2}$ four-atom ring as observed in [$\left.\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\right\}_{n}\right]$ and $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(\mathrm{IC}_{6} \mathrm{H}_{5}\right)\right\}_{n}\right]$ 4. The third and structurally unusual is a six-atom ring $\mathrm{Ag}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CCF}_{3}-\right.$ $\left.O, O^{\prime}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CCF}_{3}-O\right)$ in which one of the trifluoroacetate ligands bridges the two silver atoms via the same oxygen atom. The 1,2 -diiodobenzene ligands bridge the two silver atoms of the six-atom ring on alternate sides of the silver carboxylate chain which is composed of fused ' $8646 \cdots$ atom rings'. Silver-silver separations are 2.923(3) (eight-atom ring), 3.389(1) (six-atom ring) and 3.611(1) \AA (four-atom ring). The $\mathrm{Ag}-\mathrm{I}$ bond lengths and $\mathrm{Ag}-\mathrm{I}-\mathrm{C}$ bond angles are 2.722(2) \AA and $97.4(4)^{\circ}$ for the silver that is part of both the six- and four-atom rings, and $2.980(2)$ and $102.9(4)^{\circ}$ for the silver that is common to both six- and eight-atom rings.

The molecular structure of $\left[\mathrm{Ag}_{4}(\mathrm{hfacac})_{4}\left(p-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right] \mathbf{1 0}$ is shown in Fig. 9. Selected bond lengths and bond angles are given in Table 9. The compound is dimeric with four silver atoms per formula unit. There are two kinds of silver(I) atoms in each molecule; the outer silvers co-ordinate η^{2} to an ' HCCH ' unit of the p-iodotoluenes and three hfacac oxygen atoms whilst the inner two silvers are η^{1} bonded to the iodide atoms and also co-ordinated to four 'hfacac oxygens'. The $\mathrm{Ag}-\mathrm{O}$ distances are similar to those found in other silver hexafluoroacetylacetonates and vary from $2.322(14)$ to $2.650(14) \AA$ A. There

Table 9 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 10

$\mathrm{I}(1)-\mathrm{Ag}(1)$	2.850(4)	$\mathrm{I}(1)-\mathrm{C}(21)$	2.062(11)	$\mathrm{I}(2)-\mathrm{Ag}(3)$	2.765(2)	$\mathrm{I}(2)-\mathrm{C}(31)$	2.073(16)
$\mathrm{Ag}(1)-\mathrm{O}(1)$	2.551(17)	$\mathrm{Ag}(1)-\mathrm{O}(4)$	2.426(14)	$\mathrm{Ag}(3)-\mathrm{O}(5)$	2.529(17)	$\mathrm{Ag}(3)-\mathrm{O}(6)$	2.347(11)
$\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	2.621(12)	$\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	2.545(18)	$\mathrm{Ag}(3)-\mathrm{O}(8)$	2.555(16)	$\mathrm{Ag}(3)-\mathrm{O}\left(5^{2}\right)$	2.650(14)
$\mathrm{Ag}(2)-\mathrm{O}(3)$	2.322(14)	$\mathrm{Ag}(2)-\mathrm{O}(4)$	2.436(23)	$\mathrm{Ag}(4)-\mathrm{O}(6)$	2.485(12)	$\mathrm{Ag}(4)-\mathrm{O}(7)$	2.334(20)
$\mathrm{Ag}(2)-\mathrm{O}\left(2^{1}\right)$	2.417(11)	$\mathrm{C}(22)-\mathrm{Ag}\left(2^{1}\right)$	2.531(20)	$\mathrm{Ag}(4)-\mathrm{O}(8)$	2.409(17)	$\mathrm{C}(36)-\operatorname{Ag}\left(4^{2}\right)$	2.518(21)
$\mathrm{C}(23)-\mathrm{Ag}\left(2^{1}\right)$	2.599(20)	$\mathrm{C}(24)-\mathrm{C}(27)$	1.538(27)	$\mathrm{C}(35)-\operatorname{Ag}\left(4^{2}\right)$	2.596(17)		
$\mathrm{Ag}(1)-\mathrm{I}(1)-\mathrm{C}(21)$	104.9(6)	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(1)$	127.2(4)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(27)$	122.5(15)	$\mathrm{I}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	119.8(4)
$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(4)$	107.9(5)	$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}(4)$	76.6(5)	$\mathrm{I}(1)-\mathrm{C}(21)-\mathrm{C}(26)$	120.2(4)	$\mathrm{Ag}(3)-\mathrm{I}(2)-\mathrm{C}(31)$	103.8(4)
$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	103.9(4)	$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	103.5(4)	$\mathrm{I}(2)-\mathrm{Ag}(3)-\mathrm{O}(5)$	108.5(2)	$\mathrm{I}(2)-\mathrm{Ag}(3)-\mathrm{O}(6)$	174.7(4)
$\mathrm{O}(4)-\mathrm{Ag}(1)-\mathrm{O}\left(1^{1}\right)$	139.2(6)	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	159.7(3)	$\mathrm{O}(5)-\mathrm{Ag}(3)-\mathrm{O}(6)$	70.3(4)	$\mathrm{I}(2)-\mathrm{Ag}(3)-\mathrm{O}(8)$	106.9(3)
$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	73.1(5)	$\mathrm{O}(4)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	75.7(6)	$\mathrm{O}(5)-\mathrm{Ag}(3)-\mathrm{O}(8)$	143.6(4)	$\mathrm{O}(6)-\mathrm{Ag}(3)-\mathrm{O}(8)$	73.6(5)
$\mathrm{O}\left(1^{1}\right)-\mathrm{Ag}(1)-\mathrm{O}\left(2^{1}\right)$	65.8(5)	$\mathrm{O}(3)-\mathrm{Ag}(2)-\mathrm{O}(4)$	78.0(7)	$\mathrm{I}(2)-\mathrm{Ag}(3)-\mathrm{O}\left(5^{2}\right)$	106.6(3)	$\mathrm{O}(5)-\mathrm{Ag}(3)-\mathrm{O}\left(5^{2}\right)$	98.8(4)
$\mathrm{O}(3)-\mathrm{Ag}(2)-\mathrm{O}\left(2^{1}\right)$	126.3(5)	$\mathrm{O}(4)-\mathrm{Ag}(2)-\mathrm{O}\left(2^{1}\right)$	$77.9(5)$	$\mathrm{O}(6)-\mathrm{Ag}(3)-\mathrm{O}\left(5^{2}\right)$	78.7(4)	$\mathrm{O}(8)-\mathrm{Ag}(3)-\mathrm{O}\left(5^{2}\right)$	78.8(5)
$\mathrm{O}(3)-\mathrm{Ag}(2)-\mathrm{C}\left(22^{1}\right)$	121.2(6)	$\mathrm{O}(4)-\mathrm{Ag}(2)-\mathrm{C}\left(22^{1}\right)$	153.4(5)	$\mathrm{O}(6)-\mathrm{Ag}(4)-\mathrm{O}(7)$	121.8(5)	$\mathrm{O}(6)-\mathrm{Ag}(4)-\mathrm{O}(8)$	73.9(5)
$\mathrm{O}\left(2^{1}\right)-\mathrm{Ag}(2)-\mathrm{C}\left(22^{1}\right)$	100.3(5)	$\mathrm{O}(3)-\mathrm{Ag}(2)-\mathrm{C}\left(23^{1}\right)$	90.2(6)	$\mathrm{O}(7)-\mathrm{Ag}(4)-\mathrm{O}(8)$	78.2(6)	$\mathrm{O}(6)-\mathrm{Ag}(4)-\mathrm{C}\left(35^{2}\right)$	128.7(6)
$\mathrm{O}(4)-\mathrm{Ag}(2)-\mathrm{C}\left(23^{1}\right)$	151.8(4)	$\mathrm{O}\left(2^{1}\right)-\mathrm{Ag}(2)-\mathrm{C}\left(23^{1}\right)$	128.4(5)	$\mathrm{O}(7)-\mathrm{Ag}(4)-\mathrm{C}\left(35^{2}\right)$	95.3(6)	$\mathrm{O}(8)-\mathrm{Ag}(4)-\mathrm{C}\left(35^{2}\right)$	154.3(4)
$\mathrm{C}\left(22^{1}\right)-\mathrm{Ag}(2)-\mathrm{C}\left(23^{1}\right)$	31.5(3)	$\mathrm{Ag}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	117.0(18)	$\mathrm{O}(6)-\mathrm{Ag}(4)-\mathrm{C}\left(36^{2}\right)$	99.3(5)	$\mathrm{O}(7)-\mathrm{Ag}(4)-\mathrm{C}\left(36^{2}\right)$	125.5(5)
$\mathrm{Ag}(1)-\mathrm{O}(1)-\mathrm{Ag}\left(1^{1}\right)$	76.5(4)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Ag}\left(1^{1}\right)$	124.5(11)	$\mathrm{O}(8)-\mathrm{Ag}(4)-\mathrm{C}\left(36^{2}\right)$	152.8(4)	$\mathrm{C}\left(35^{2}-\mathrm{Ag}(4)-\mathrm{C}\left(36^{2}\right)\right.$	31.6(2)
$\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{Ag}\left(1^{1}\right)$	123.3(17)	$\mathrm{C}(3)-\mathrm{O}(2)-\operatorname{Ag}\left(2^{1}\right)$	132.8(13)	$\mathrm{Ag}(3)-\mathrm{O}(5)-\mathrm{C}(11)$	123.7(16)	$\mathrm{Ag}(3)-\mathrm{O}(5)-\operatorname{Ag}\left(3^{2}\right)$	81.2(4)
$\mathrm{Ag}\left(1^{1}\right)-\mathrm{O}(2)-\mathrm{Ag}\left(2^{1}\right)$	92.2(5)	$\mathrm{Ag}(2)-\mathrm{O}(3)-\mathrm{C}(6)$	123.8(15)	$\mathrm{C}(11)-\mathrm{O}(5)-\mathrm{Ag}\left(3^{2}\right)$	111.9(14)	$\mathrm{Ag}(3)-\mathrm{O}(6)-\mathrm{Ag}(4)$	95.6(5)
$\mathrm{Ag}(1)-\mathrm{O}(4)-\mathrm{Ag}(2)$	94.7(6)	$\mathrm{Ag}(1)-\mathrm{O}(4)-\mathrm{C}(8)$	142.5(18)	$\mathrm{Ag}(3)-\mathrm{O}(6)-\mathrm{C}(13)$	126.5(11)	$\mathrm{Ag}(4)-\mathrm{O}(6)-\mathrm{C}(13)$	136.5(10)
$\mathrm{Ag}(2)-\mathrm{O}(4)-\mathrm{C}(8)$	117.1(17)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{Ag}\left(2^{1}\right)$	77.0 (3)	$\mathrm{Ag}(4)-\mathrm{O}(7)-\mathrm{C}(16)$	124.9(12)	$\mathrm{Ag}(3)-\mathrm{O}(8)-\mathrm{Ag}(4)$	92.3(7)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{Ag}\left(2^{1}\right)$	104.8(3)	$\mathrm{C}(22)-\mathrm{C}(23)-\operatorname{Ag}\left(2^{1}\right)$	71.5(3)	$\mathrm{Ag}(3)-\mathrm{O}(8)-\mathrm{C}(18)$	141.9(11)	$\mathrm{Ag}(4)-\mathrm{O}(8)-\mathrm{C}(18)$	123.4(12)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{Ag}\left(2^{1}\right)$	107.3(3)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(27)$	117.4(15)				

Symmetry transformations used to generate equivalent atoms: $11-x,-y,-z ; 21-x,-y, 1-z$.

Fig. 9 Labelling scheme and structure of complex 10. For clarity fluorine atoms have been omitted
exist two types of tridentate μ_{3}-bridging hfacac co-ordination modes, which are fairly similar to those observed in the norbornadiene (bicyclo[2.2.1]hepta-2,5-diene, nbd) complex $\left[\mathrm{Ag}_{4}{ }^{-}\right.$ $\left.(\text { hfacac })_{4}(\mathrm{nbd})_{2}\right]^{9}$. Unusual hfacac bridging modes have also recently been identified in the cyclooctadiene compound $\left[\mathrm{Ag}_{2}(\mathrm{hfacac})_{2}(\mathrm{cod})_{2}\right]^{10} \mathrm{The} \mathrm{Ag-I} \mathrm{bond} \mathrm{length} \mathrm{is} 2.850(4) \AA$ and the $\mathrm{Ag}-\mathrm{I}-\mathrm{C}$ bond angle is $104.9(6)^{\circ}$. Several examples of η^{2} coordination of arenes to Ag^{1} are known. ${ }^{11}$

The molecular structure of $\left[\mathrm{Ag}_{4}(\mathrm{hfacac})_{4}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right] \mathbf{1 1}$ is shown in Fig. 10. Selected bond lengths and bond angles are given in Table 10. All four silvers have different co-ordination environments. Two μ_{3} and two μ_{4} hfacac bonding modes are observed. The three 1,2 -diiodobenzene ligands are each coordinated to a different silver via an iodine atom(s). The diiodobenzene co-ordinated to $\mathrm{Ag}(1)$ is clearly monodentate with

Table 10 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 11

$\mathrm{Ag}(1)-\mathrm{I}(1)$	$3.064(3)$	$\mathrm{Ag}(1)-\mathrm{O}(1)$	$2.330(10)$
$\mathrm{Ag}(1)-\mathrm{O}(2)$	$2.465(12)$	$\mathrm{Ag}(1)-\mathrm{O}(3)$	$2.393(11)$
$\mathrm{Ag}(1)-\mathrm{O}(4)$	$2.506(8)$	$\mathrm{Ag}(2)-\mathrm{I}(3)$	$3.228(2)$
$\mathrm{Ag}(2)-\mathrm{I}(4)$	$2.719(2)$	$\mathrm{Ag}(2)-\mathrm{O}(3)$	$2.463(10)$
$\mathrm{Ag}(2)-\mathrm{O}(5)$	$2.390(11)$	$\mathrm{Ag}(2)-\mathrm{O}(7)$	$2.399(9)$
$\mathrm{Ag}(3)-\mathrm{I}(5)$	$2.691(2)$	$\mathrm{Ag}(3)-\mathrm{O}(2)$	$2.369(9)$
$\mathrm{Ag}(3)-\mathrm{O}(4)$	$2.387(11)$	$\mathrm{Ag}(3)-\mathrm{O}(6)$	$2.452(10)$
$\mathrm{Ag}(4)-\mathrm{O}(5)$	$2.575(8)$	$\mathrm{Ag}(4)-\mathrm{O}(6)$	$2.310(10)$
$\mathrm{Ag}(4)-\mathrm{O}(7)$	$2.388(12)$	$\mathrm{Ag}(4)-\mathrm{O}(8)$	$2.316(10)$
$\mathrm{Ag}(3) \cdots \mathrm{I}(6)$	$3.350(2)$	$\mathrm{Ag}(1) \cdots \mathrm{I}(3)$	$3.436(2)$
$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(1)$	$97.0(3)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(2)$	$76.4(3)$
$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}(2)$	$75.7(4)$	$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(3)$	$99.4(3)$
$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}(3)$	$137.6(4)$	$\mathrm{O}(2)-\mathrm{Ag}(1)-\mathrm{O}(3)$	$146.3(3)$
$\mathrm{I}(1)-\mathrm{Ag}(1)-\mathrm{O}(4)$	$81.5(3)$	$\mathrm{O}(1)-\mathrm{Ag}(1)-\mathrm{O}(4)$	$151.4(4)$
$\mathrm{O}(2)-\mathrm{Ag}(1)-\mathrm{O}(4)$	$76.2(3)$	$\mathrm{O}(3)-\mathrm{Ag}(1)-\mathrm{O}(4)$	$70.1(3)$
$\mathrm{I}(3)-\mathrm{Ag}(2)-\mathrm{I}(4)$	$76.5(1)$	$\mathrm{I}(3)-\mathrm{Ag}(2)-\mathrm{O}(3)$	$78.9(2)$
$\mathrm{I}(4)-\mathrm{Ag}(2)-\mathrm{O}(3)$	$131.5(2)$	$\mathrm{I}(3)-\mathrm{Ag}(2)-\mathrm{O}(5)$	$87.1(2)$
$\mathrm{I}(4)-\mathrm{Ag}(2)-\mathrm{O}(5)$	$139.0(2)$	$\mathrm{O}(3)-\mathrm{Ag}(2)-\mathrm{O}(5)$	$79.6(4)$
$\mathrm{I}(3)-\mathrm{Ag}(2)-\mathrm{O}(7)$	$152.8(3)$	$\mathrm{I}(4)-\mathrm{Ag}(2)-\mathrm{O}(7)$	$129.0(3)$
$\mathrm{O}(3)-\mathrm{Ag}(2)-\mathrm{O}(7)$	$76.2(3)$	$\mathrm{O}(5)-\mathrm{Ag}(2)-\mathrm{O}(7)$	$78.0(3)$
$\mathrm{I}(5)-\mathrm{Ag}(3)-\mathrm{O}(2)$	$133.8(3)$	$\mathrm{I}(5)-\mathrm{Ag}(3)-\mathrm{O}(4)$	$134.2(2)$
$\mathrm{O}(2)-\mathrm{Ag}(3)-\mathrm{O}(4)$	$80.3(3)$	$\mathrm{I}(5)-\mathrm{Ag}(3)-\mathrm{O}(6)$	$129.7(2)$
$\mathrm{O}(2)-\mathrm{Ag}(3)-\mathrm{O}(6)$	$75.8(4)$	$\mathrm{O}(4)-\mathrm{Ag}(3)-\mathrm{O}(6)$	$81.0(4)$
$\mathrm{O}(5)-\mathrm{Ag}(4)-\mathrm{O}(6)$	$70.2(3)$	$\mathrm{O}(5)-\mathrm{Ag}(4)-\mathrm{O}(7)$	$74.6(3)$
$\mathrm{O}(6)-\mathrm{Ag}(4)-\mathrm{O}(7)$	$142.7(3)$	$\mathrm{O}(5)-\mathrm{Ag}(4)-\mathrm{O}(8)$	$147.4(4)$
$\mathrm{O}(6)-\mathrm{Ag}(4)-\mathrm{O}(8)$	$140.6(4)$	$\mathrm{O}(7)-\mathrm{Ag}(4)-\mathrm{O}(8)$	$76.5(4)$
$\mathrm{Ag}(1)-\mathrm{I}(1)-\mathrm{C}(31)$	$16.8(5)$	$\mathrm{Ag}(2)-\mathrm{I}(3)-\mathrm{C}(41)$	$85.9(4)$
$\mathrm{Ag}(2)-\mathrm{I}(4)-\mathrm{C}(46)$	$95.6(4)$	$\mathrm{Ag}(3)-\mathrm{I}(5)-\mathrm{C}(51)$	$96.2(3)$
$\mathrm{Ag}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$129.3(10)$	$\mathrm{Ag}(1)-\mathrm{O}(2)-\mathrm{Ag}(3)$	$96.3(4)$
$\mathrm{Ag}(1)-\mathrm{O}(2)-\mathrm{C}(3)$	$125.0(9)$	$\mathrm{Ag}(3)-\mathrm{O}(2)-\mathrm{C}(3)$	$138.3(10)$
$\mathrm{Ag}(1)-\mathrm{O}(3)-\mathrm{Ag}(2)$	$97.8(3)$	$\mathrm{Ag}(1)-\mathrm{O}(3)-\mathrm{C}(6)$	$123.8(11)$
$\mathrm{Ag}(2)-\mathrm{O}(3)-\mathrm{C}(6)$	$137.5(11)$	$\mathrm{Ag}(1)-\mathrm{O}(4)-\mathrm{Ag}(3)$	$94.7(3)$
$\mathrm{Ag}(1)-\mathrm{O}(4)-\mathrm{C}(8)$	$121.5(8)$	$\mathrm{Ag}(3)-\mathrm{O}(4)-\mathrm{C}(8)$	$140.0(10)$
$\mathrm{Ag}(2)-\mathrm{O}(5)-\mathrm{Ag}(4)$	$92.4(3)$	$\mathrm{Ag}(2)-\mathrm{O}(5)-\mathrm{C}(11)$	$138.8(10)$
$\mathrm{Ag}(4)-\mathrm{O}(5)-\mathrm{C}(11)$	$120.8(8)$	$\mathrm{Ag}(3)-\mathrm{O}(6)-\mathrm{Ag}(4)$	$100.3(3)$
$\mathrm{Ag}(3)-\mathrm{O}(6)-\mathrm{C}(13)$	$132.4(10)$	$\mathrm{Ag}(4)-\mathrm{O}(6)-\mathrm{C}(13)$	$127.1(10)$
$\mathrm{Ag}(2)-\mathrm{O}(7)-\mathrm{Ag}(4)$	$97.0(4)$	$\mathrm{Ag}(2)-\mathrm{O}(7)-\mathrm{C}(16)$	$130.0(9)$
$\mathrm{Ag}(4)-\mathrm{O}(7)-\mathrm{C}(16)$	$127.0(8)$	$\mathrm{Ag}(4)-\mathrm{O}(8)-\mathrm{C}(18)$	$130.6(10)$

an $\mathrm{Ag}(1)-\mathrm{I}(1)$ bond length of $3.064(3) \AA$ whilst the $\mathrm{Ag}(1) \cdots$ I(2) separation is $5.80 \AA$. The diiodobenzene co-ordinated to $\mathrm{Ag}(3)$ has a rather short $\mathrm{Ag}(3)-\mathrm{I}(5)$ bond distance of 2.691(2) \AA together with an $\operatorname{Ag}(3) \cdots I(6)$ separation of $3.350(2) \AA$ suggestive of a very weak interaction between $\operatorname{Ag}(3)$ and the second iodine of the diiodobenzene ligand. The diiodobenzene

Fig. 10 Labelling scheme and structure of complex 11. For clarity fluorine atoms and minor components of disorder have been omitted
bonded to $\mathrm{Ag}(2)$ exhibits a similar unsymmetrical bidentate interaction with $\operatorname{Ag}(2)-\mathrm{I}(4)$ and $\operatorname{Ag}(2) \cdots \mathrm{I}(3)$ bond lengths of $2.719(2)$ and $3.228(2) \AA$ respectively. The $\mathrm{Ag}(2)-\mathrm{I}(3)-\mathrm{C}(41)$ bond angle is $85.9(4)^{\circ}$ whilst that of $\mathrm{Ag}(2)-\mathrm{I}(4)-\mathrm{C}(46)$ is $95.6(4)^{\circ}$. The silver is not coplanar with the $\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ ligand. The structural features of the $\mathrm{Ag}(2) \mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ unit are very similar to those reported for one of the ligands in the exo-dithio-7,8-dicarba-nido-undecaborate derivative $\left[\mathrm{NMe}_{4}\right]\left[\mathrm{Ag}\left\{7,8-\mu\right.\right.$ - $\left(\mathrm{SCH}_{2}-\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{~S}\right)-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right\}_{2}$] where unsymmetric $\mathrm{Ag}-\mathrm{S}$ bond lengths of $2.520(4)$ and $2.939(4) \AA$ are observed. ${ }^{12}$

The molecular 'hfacac' complexes $\mathbf{1 0}$ and $\mathbf{1 1}$ were subjected to variable-temperature ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution. Signals associated with only one type of aryl iodide and one type of hfacac ligand were observed down to $-70^{\circ} \mathrm{C}$. These observations, which are not consistent with the solid-state structures of $\mathbf{1 0}$ and 11, are indicative of rapid intraand/or inter-molecular exchange processes even at $-70^{\circ} \mathrm{C}$ and the structures of all of the above compounds in solution are not easily ascertained. Similar solution behaviour is observed for the norbornadiene complex $\left[\mathrm{Ag}_{4}(\mathrm{hfacac})_{4}(\mathrm{nbd})_{2}\right] .^{9}$

As expected for silver(I) co-ordination compounds, a range of co-ordination geometries are readily attained in complexes containing aromatic iodocarbons and/or $\mathrm{CH}_{2} \mathrm{I}_{2}$. Geometries have been realized that are close to ideal whilst in others large distortions are observed. ${ }^{5}$ Co-ordination environments structurally characterized to date include $(\mathrm{RI})_{4} \mathrm{Ag}^{+},(\mathrm{RI})_{2} \mathrm{AgO}_{x}$ ($x=2$ or 3), (RI) $\mathrm{AgO}_{y}(y=3$ or 4$)$ and $(\mu-\mathrm{RI}) \mathrm{Ag}_{2} \mathrm{O}_{z}(z=4$ or 6) where O is an oxygen atom of an oxyanion $\left(\mathrm{O}_{2} \mathrm{CCF}_{3}^{-}\right.$, $\left.\mathrm{NO}_{3}{ }^{-}, \mathrm{O}_{2} \mathrm{PF}_{2}^{-}\right)$. The weakly bonded iodocarbon, ${ }^{13}$ as expected, is easily distorted from ideal geometries exhibiting $\mathrm{Ag}-\mathrm{I}-\mathrm{C}$ bond angles ranging from 85.9(4) \AA found in 11 to $108.70(12)^{\circ}$ found in 3. Particularly noteworthy is the ability of aromatic iodides to function as bridging ligands with complexes $\mathbf{8}, \mathbf{5}$ and $\mathbf{4}$ being the first examples of this type of arrangement. For bridging μ-RI systems $\mathrm{Ag}-\mathrm{I}-\mathrm{Ag}$ bond angles vary from 61.4(1) ${ }^{\circ}$ found in $\mathbf{8}$ to $144.53(3)^{\circ}$ found in $\mathbf{5}$ Silver-iodine bond distances for η^{1}-co-ordinated iodocarbons vary from 2.691(2) observed in $\mathbf{1 1}$ to $3.1446(7) \AA$ observed in 1. However weaker interactions are observed for the semibridging iodobenzene in 4 [2.853(1) and $3.309(1) \AA$] and for the semichelating $1,2-\mathrm{C}_{6} \mathrm{H}_{4}$ ligands in $\mathbf{1 1}$ [2.689(3) and $3.350(2)$, and 2.719(2) and 3.228(2) A].

Experimental

Silver oxide, silver trifluoroacetate, hexafluoroacetylacetone, trichloroacetic acid, diiodomethane, iodobenzene, p-iodotoluene, 1,2 - and 1,4-diiodobenzene were obtained from the Aldrich Chemical Co. Elemental analyses were done by Canadian Microanalytical Laboratories, Vancouver, British Columbia, Canada.

Syntheses

[$\left.\left\{\mathbf{A g}_{2}\left(\mathbf{O}_{2} \mathbf{C C F}_{3}\right)_{2}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{I}_{2}\right)_{2}\right\}_{n}\right]$. Silver trifluoroacetate $(0.341 \mathrm{~g})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$. The solution was filtered and $\mathrm{CH}_{2} \mathrm{I}_{2}\left(0.4 \mathrm{~cm}^{3} ;\right.$ a $\mathrm{CH}_{2} \mathrm{I}_{2}$: Ag ratio of ca. $\left.3: 1\right)$ added. Addition of pentanes ($10 \mathrm{~cm}^{3}$) and cooling to $0^{\circ} \mathrm{C}$ gave complex $\mathbf{1}$ as white plate-like crystals (35% yield) which melted at room temperature.
The complexes $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{n}\right] \mathbf{2}$ and $\left[\left\{\mathrm{Ag}_{2}-\right.\right.$ $\left.\left.\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(1,4-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{n}\right] \mathbf{3}$ were similarly prepared. Complex 2 was obtained as low melting ($\approx 10^{\circ} \mathrm{C}$) pale yellow plates (Yield 40%), 3 as white needles (yield 62%), m.p. $41-42{ }^{\circ} \mathrm{C}$ (Found: C, 16.92; H, 0.94; I, 45.35. Calc. for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{AgF}_{3} \mathrm{I}_{2} \mathrm{O}_{2}$; C, 17.45; H, 0.73; I, 46.08\%).
[\{ $\left.\left.\mathbf{A g}_{2}\left(\mathbf{O}_{2} \mathbf{C C F}_{3}\right)_{2}\left(\mathbf{I C}_{6} \mathbf{H}_{5}\right)\right\}_{n}\right]$ 4. Iodobenzene $\left(0.2 \mathrm{~cm}^{3}\right)$ was added to silver trifluoroacetate $(0.192 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$. The solution was filtered and the volume reduced in vacuo. On cooling to $0^{\circ} \mathrm{C}$ complex 4 was obtained as white prisms (28% yield), m.p. $122-128^{\circ} \mathrm{C}$ (Found: C, 18.29; H, 0.95; I, 20.14. Calc. for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{IO}_{4}$: C, 18.60; H, $0.78 ; \mathrm{I}, 19.65 \%$). The complex $\left[\left\{\mathrm{Ag}_{4}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(p-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right\}_{n}\right] 5$ was similarly prepared and isolated as white needles (25% yield), m.p. $59-63^{\circ} \mathrm{C}$ (Found: C, 19.15; H, 1.58; I, 18.24. Calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{IO}_{5}: \mathrm{C}, 19.49 ; \mathrm{H}, 1.34$; I, 18.72%). The complex $\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}_{n}\right] \mathbf{6}$ was isolated as white prisms (yield 48%) (Found: C, 15.21; H, 0.64; I, 35.52. Calc. for $\left.\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{AgF}_{3} \mathrm{IO}_{2}: \mathrm{C}, 15.56 ; \mathrm{H}, 0.52 ; \mathrm{I}, 32.89 \%\right)$.
$\left[\left\{\mathrm{Ag}_{2}\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2}\left(\mathbf{H O}_{2} \mathbf{C C C l}_{3}\right)\left(\mathbf{1 , 2}-\mathbf{I}_{2} \mathbf{C}_{6} \mathbf{H}_{4}\right)\right\}_{n}\right]$ 7. Silver oxide $(0.28 \mathrm{~g})$ and 1,2 -diiodobenzene $\left(0.31 \mathrm{~cm}^{3}\right)$ were added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. Trichloroacetic acid (ca. 1 g) was slowly added to the stirred suspension until all the silver oxide was consumed. The mixture was then filtered, the volume of the filtrate reduced to $10 \mathrm{~cm}^{3}$, pentane $\left(10 \mathrm{~cm}^{3}\right)$ added and the solution cooled to $0^{\circ} \mathrm{C}$. Complex 7 crystallized as white needles (yield 47%), m.p. $100-103{ }^{\circ} \mathrm{C}$ (Found: C, 13.73; H, 0.62; I, 25.12. Calc. for $\left.\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{Ag}_{2} \mathrm{Cl}_{9} \mathrm{I}_{2} \mathrm{O}_{6}: \mathrm{C}, 13.94 ; \mathrm{H}, 0.49 ; \mathrm{I}, 24.55 \%\right)$. The iodobenzene and p-iodotoluene complexes 8, m.p. $100-102^{\circ} \mathrm{C}$, and 9 , m.p. $75-78^{\circ} \mathrm{C}$, were similarly prepared (Found for $\mathbf{8 :}$ C, 15.63 ; $\mathrm{H}, 1.00 ; \mathrm{I}, 13.85$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Ag}_{2} \mathrm{Cl}_{9} \mathrm{IO}_{6}$: C, $15.85 ; \mathrm{H}, 0.67$; I, 13.97. Found for 9: C, 16.47; H, 0.92; I, 13.36. Calc. for $\left.\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Ag}_{2} \mathrm{Cl}_{9} \mathrm{IO}_{6}: \mathrm{C}, 16.94 ; \mathrm{H}, 0.87 ; \mathrm{I}, 13.77 \%\right)$.
[$\left.\left\{\mathbf{A g}_{4}(\mathbf{h f a c a c})_{4}\left(\mathbf{I C}_{6} \mathbf{H}_{4} \mathbf{M e}\right)_{2}\right\}_{n}\right]$ 10. Silver oxide (0.51 g) and hexafluoroacetylacetone $\left(0.31 \mathrm{~cm}^{3}\right)$ were added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ $\left.\mathrm{cm}^{3}\right)$. p-Iodotoluene (0.484 g) was added and the resultant solution filtered and the volume reduced in vacuo to $\approx 8 \mathrm{~cm}^{3}$. Pentane $\left(5 \mathrm{~cm}^{3}\right)$ was added and the solution allowed to stand at $0^{\circ} \mathrm{C}$ for several days. Complex 10 was obtained as off-white prisms (yield 38%), m.p. $81-84^{\circ} \mathrm{C}$ (Found: C, 24.31 ; H, 1.29; I, 14.78. Calc. for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{Ag}_{2} \mathrm{~F}_{12} \mathrm{IO}_{4}$: C, 24.08 ; $\mathrm{H}, 1.07$; I, 14.97%). The complex $\left[\mathrm{Ag}_{4}(\text { hfacac })_{4}\left(1,2-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right] \mathbf{1 1}$ was similarly prepared (Found: C, 20.41; H, 0.84; I, 33.61. Calc. for $\mathrm{C}_{19} \mathrm{H}_{8} \mathrm{Ag}_{2} \mathrm{~F}_{12} \mathrm{I}_{3} \mathrm{O}_{4}$: C, 20.29; H, 0.72; I, 33.85\%).

Crystallography

Crystal data and details of the data collection and structure refinement for compounds $\mathbf{1 - 1 1}$ can be found in Table 11. Each compound yielded colourless crystals which darkened on prolonged exposure to light. Generally the data sets collected at room temperature were subject to linear intensity decay and this was corrected for. No significant decay was noticed in the case of the low-temperature data sets. Low-temperature data collection was not available for all the complexes. All data sets were collected using Mo-K α radiation ($\lambda=0.71073 \AA$). Data were corrected for Lorentz-polarization and for absorption. ${ }^{14}$ The structures were solved and refined using the SHELXTL PC package. ${ }^{15}$ All refinements on F were by full-matrix least

Table 11 Crystal data and details of data collection and structure refinement for complexes 1-8, $\mathbf{1 0}$ and $\mathbf{1 1}$

	1	2	3	4	5	6	7	8	10	11
Emprical formula Crystal size/mm	$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{AgF}_{3} \mathrm{I}_{2} \mathrm{O}_{2} \\ & 0.15 \times 0.12 \times 0.14 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{AgF}_{3} \mathrm{I}_{2} \mathrm{O}_{2} \\ & 0.52 \times 0.23 \times 0.48 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{AgF}_{3} \mathrm{I}_{2} \mathrm{O}_{2} \\ & 0.35 \times 0.15 \times 0.13 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{IO}_{4} \\ & 0.62 \times 0.46 \times 0.26 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{IO}_{5} \\ & 0.25 \times 0.18 \times 0.30 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{10} \mathrm{H}_{4} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{I}_{2} \mathrm{O}_{4} \\ & 0.32 \times 0.14 \times 0.15 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{5} \mathrm{Ag}_{2} \mathrm{Cl}_{9} \mathrm{I}_{2} \mathrm{O}_{6} \\ & 0.31 \times 0.22 \times 0.21 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{Ag}_{2} \mathrm{Cl}_{5} \mathrm{IO}_{6} \\ & 0.23 \times 0.30 \times 0.20 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{34} \mathrm{H}_{18} \mathrm{Ag}_{4} \mathrm{~F}_{224} \mathrm{I}_{2} \mathrm{O}_{8} \\ & 0.25 \times 0.45 \times 0.32 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{38} \mathrm{H}_{16} \mathrm{Ag}_{4} \mathrm{~F}_{245} \mathrm{I}_{6} \mathrm{O}_{8} \\ & 0.28 \times 0.23 \times 0 \times 4 \end{aligned}$
M	488.72	550.8	550.8	645.8	677.8	771.7	1033.8	907.9	1695.8	2249.4
Crystal class	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic	Triclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	$P 2.1 c$	$P 2.1 c$	$P 2.1 c$	$P \overline{1}$	$P \overline{1}$	$P \overline{1}$	$P 2.1 c$	C2/c	$P \overline{1}$	$P \overline{1}$
alÅ	9.928(1)	6.533(2)	5.509(1)	8.513(2)	5.222(1)	7.843(2)	13.755(3)	16.235(3)	10.782(2)	11.621(2)
blÅ	7.756(1)	24.493(5)	20.877(2)	9.123(2)	11.340(3)	9.329(3)	17.999(2)	16.994(3)	14.716(2)	12.479(2)
clÅ	11.439(1)	8.224(2)	10.296(1)	10.793(2)	14.172(3)	11.604(3)	11.344(2)	17.968(4)	16.976(2)	22.076(4)
$\alpha /{ }^{\circ}$				69.09(2)	81.95(2)	85.25(2)			71.30(2)	91.71(3)
$\beta /{ }^{\circ}$	96.89(3)	113.00(1)	92.25(1)	80.21(2)	84.60(2)	83.80(2)	113.59(5)	94.90(3)	75.51(2)	103.66(3)
γ^{\prime}				78.52(2)	86.94(2)	79.92(2)			68.60(2)	111.55(3)
U / \AA^{3}	878.6(2)	1211.3(5)	1179.2(3)	762.9(3)	826.6(3)	829.3(5)	2573.8(8)	4939.2(10)	2348.2(8)	$2869.2(2)$
Z	4	4	4	2	2	2	4	8	2	2
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	3.685	3.020	3.875	2.811	2.723	3.090	2.668	2.442	2.398	2.604
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	9.322	6.781	6.965	4.669	4.320	6.159	4.883	3.837	3.100	4.696
$F(000)$	864	992	992	596	632	700	1912	3408	1582	2060
Diffractometer	Siemens P4	Siemens P4	Siemens P4	Enraf-Nonius	Siemens P4	Enraf-Nonius	Enraf-Nonius	Enraf-Nonius	Enraf-Nonius	Enraf-Nonius
				CAD4		CAD4	CAD4	CAD4	CAD4	CAD4
T/K	153	173	173	294	173	294	294	294	294	294
2θ range $/{ }^{\circ}$	3.2-30.0	3.2-54.0	7.0-60.0	4.8-52.7	6.4-50.0	3.0-60.0	2.3-45.0	2.3-50.0	2.6-45	3.5-45.0
Intensity decay (\%)	<2	<2	<2	1.000, 0.676	<2\%	1.000-0.0783	1.000-1.041	1.009-0.345	1.000-0.727	1.002-0.890
Minimum, maximum absorption correction	0.2175, 0.5160	0.1335, 0.6123	0.1911, 0.6056	0.5700, 0.91200	0.2942, 0.7953	0.729, 1.353	0.2525, 0.6632	0.1234, 0.7730	$0.2468,0.7436$	0.0036, 0.7084
No. reflections collected	2685	2870	3746	3366	3247	4904	3695	4722	4155	7597
Unique reflections	2554	2651	3434	3097	2901	4633	3353	4325	4065	7502
$R_{\text {int }}$	0.062	0.018	0.024	0.029	0.047	0.116	0.024	0.152	0.000	0.000
Observed reflections $[F>4 \sigma(F)]$	2255	2403	3111	2323	2458	2327	2722	2592	2966	5558
Refinement on	F^{2}	F^{2}	F^{2}	F	F^{2}	F	F	F	F	F
Weighting g or a, b	0.0467, 4.59	0.0668, 5.97	0.0135, 5.02	0.0020	0.1000. 0.00	0.0008	0.0035	0.0100	0.0061	0.0004
$R 1$ or R	$R 1=0.0347$	$R 1=0.0406$	$R 1=0.0281$	$R=0.0425$	$R 1=0.0509$	$R=0.0631$	$R=0.0368$	$R=0.0802$	$R=0.0599$	$R=0.0709$
$w R 2$ or R^{\prime}	$w R 2=0.0996$	$w R 2=0.1135$	$w R 2=0.0696$	$R^{\prime}=0.0686$	$w R 2=0.1327$	$R=0.0945$	$R^{\prime}=0.0650$	$R^{\prime}=0.1283$	$R^{\prime}=0.0994$	$R^{\prime}=0.0087$
Goodness of fit	1.16	1.08	1.19	1.29	1.019	2.27	1.03	1.16	1.19	3.24
Largest, mean Δ / σ	0.002, 0.000	0.015, 0.001	0.006, 0.001	0.080, 0.010	0.002, 0.000	0.52, 0.02	0.000, 0.000	0.52, 0.03	0.12, 0.01	0.26, 0.07
$\Delta \rho$ Maximum, minimum e \AA^{-3}	1.44, -1.85	1.56, -1.93	0.93, -1.02	0.77, -0.66	1.97, -1.80	1.25, -1.41	1.01, 1.69	1.54, -1.09	1.09, 0.81	1.92, -1.61

squares [using data with $F>4 \sigma(F)$] with weights of $w^{-1}=$ $\sigma^{2}(F)+g F^{2}$. The F^{2} refinements were carried out using all data and the weighting scheme was $w^{-1}=\left[\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+b P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$. H-atoms were placed in calculated positions and included in the refinements as riding atoms.

In compound $\mathbf{1 1}$ two iodine atoms $\left[\left(\mathrm{I}(1) / \mathrm{I}\left(1^{*}\right)\right.\right.$ and $\left.\mathrm{I}(2) / \mathrm{C}(34)\right]$ are disordered over two sites and the minor component of $\mathrm{I}(2)$ lies on the same site as $\mathrm{C}(34)$. The disorder is not shown in Fig. 10.

CCDC reference number 186/815.

Acknowledgements

We thank the Natural Science and Engineering Research Council of Canada for financial support.

References

1 D. M. Van Seggen, O. P. Anderson and S. H. Strauss, Inorg. Chem., 1992, 31, 2987.
2 M. R. Colsman, T. D. Newbound, L. J. Marshall, M. D. Noirot, M. M. Miller, G. P. Wulfsberg, J. S. Frye, O. P. Anderson and S. H. Strauss, J. Am. Chem. Soc., 1990, 112, 2349.
3 R. Scholl and W. Steinkopf, Chem. Ber., 1906, 39, 393.

4 J. Powell, M. Horvath and A. Lough, J. Chem. Soc., Chem. Comтип., 1993, 733.
5 J. Powell, M. Horvath and A. Lough, J. Chem. Soc., Dalton Trans., 1996, 1669.
6 J. Powell, M. Horvath and A. Lough, J. Organomet. Chem., 1993, 456, C27.
7 R. G. Griffin, J. D. Ellett, M. Mehring, J. G. Bullit and J. S. Waugh, J. Chem. Phys., 1972, 57, 2147.

8 X.-M. Chen and T. C. W. Mak, J. Chem. Soc., Dalton Trans, 1991, 1219.

9 C. Xu, T. S. Corbitt, M. J. Hampden-Smith, T. T. Kodas and E. N. Duesler, J. Chem. Soc., Dalton Trans., 1994, 2841.

10 A. Bailey, T. S. Corbitt, M. J. Hampden-Smith, E. N. Duesler and T. T. Kodas, Polyhedron, 1993, 12, 1785.

11 H. C. Kang, A. W. Hanson, B. Eaton and V. Boekelheide, J. Am. Chem. Soc., 1985, 107, 1979 and refs. therein.
12 F. Teixidor, J. A. Ayllón, C. Vinãs, J. Rius, C. Miravitlles and J. Casabó, J. Chem. Soc., Chem. Commun., 1992, 1279.

13 R. J. Kulawiec and R. H. Crabtree, Coord. Chem. Rev., 1990, 99, 89.
14 G. M. Sheldrick, SHELXA in SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.
15 G. M. Sheldrick, SHELXTL PC, Siemens Analytical X-ray Instruments, Madison, WI, 1990.

Received 18th August 1997; Paper 7/06028I

